home *** CD-ROM | disk | FTP | other *** search
- /* Target-machine dependent code for Hitachi H8/300, for GDB.
- Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- /*
- Contributed by Steve Chamberlain
- sac@cygnus.com
- */
-
- #include "defs.h"
- #include "frame.h"
- #include "obstack.h"
- #include "symtab.h"
- #define UNSIGNED_SHORT(X) ((X) & 0xffff)
-
- /* an easy to debug H8 stack frame looks like:
- 0x6df2 push r2
- 0x6df3 push r3
- 0x6df6 push r6
- 0x mov.w r7,r6
- subs stuff,sp mov.w #x,r5
- subs r5,sp
-
- */
-
- #define IS_PUSH(x) ((x & 0xff00)==0x6d00)
- #define IS_MOVE_FP(x) (x == 0x0d76)
- #define IS_MOV_SP_FP(x) (x == 0x0d76)
- #define IS_SUB2_SP(x) (x==0x1b87)
- #define IS_MOVK_R5(x) (x==0x7905)
- CORE_ADDR examine_prologue();
-
- void frame_find_saved_regs ();
- CORE_ADDR h8300_skip_prologue(start_pc)
- CORE_ADDR start_pc;
-
- {
-
- /* Skip past all push insns */
- short int w;
-
- w = read_memory_short(start_pc);
- while (IS_PUSH(w))
- {
- start_pc+=2;
- w = read_memory_short(start_pc);
- }
-
- /* Skip past a move to FP */
- if (IS_MOVE_FP(w)) {
- start_pc +=2 ;
- w = read_memory_short(start_pc);
- }
-
- return start_pc;
-
- }
-
-
- int
- print_insn(memaddr, stream)
- CORE_ADDR memaddr;
- FILE *stream;
- {
- /* Nothing is bigger than 8 bytes */
- char data[8];
- read_memory (memaddr, data, sizeof(data));
- return print_insn_h8300(memaddr, data, stream);
- }
-
-
- /* Given a GDB frame, determine the address of the calling function's frame.
- This will be used to create a new GDB frame struct, and then
- INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
-
- For us, the frame address is its stack pointer value, so we look up
- the function prologue to determine the caller's sp value, and return it. */
-
- FRAME_ADDR
- FRAME_CHAIN (thisframe)
- FRAME thisframe;
- {
-
- frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
- return thisframe->fsr->regs[SP_REGNUM];
- }
-
-
-
- /* Put here the code to store, into a struct frame_saved_regs,
- the addresses of the saved registers of frame described by FRAME_INFO.
- This includes special registers such as pc and fp saved in special
- ways in the stack frame. sp is even more special:
- the address we return for it IS the sp for the next frame.
-
- We cache the result of doing this in the frame_cache_obstack, since
- it is fairly expensive. */
-
- void
- frame_find_saved_regs (fi, fsr)
- struct frame_info *fi;
- struct frame_saved_regs *fsr;
- {
- register CORE_ADDR next_addr;
- register CORE_ADDR *saved_regs;
- register int regnum;
- register struct frame_saved_regs *cache_fsr;
- extern struct obstack frame_cache_obstack;
- CORE_ADDR ip;
- struct symtab_and_line sal;
- CORE_ADDR limit;
-
- if (!fi->fsr)
- {
- cache_fsr = (struct frame_saved_regs *)
- obstack_alloc (&frame_cache_obstack,
- sizeof (struct frame_saved_regs));
- bzero (cache_fsr, sizeof (struct frame_saved_regs));
- fi->fsr = cache_fsr;
-
- /* Find the start and end of the function prologue. If the PC
- is in the function prologue, we only consider the part that
- has executed already. */
-
- ip = get_pc_function_start (fi->pc);
- sal = find_pc_line (ip, 0);
- limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
-
- /* This will fill in fields in *fi as well as in cache_fsr. */
- examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
- }
-
- if (fsr)
- *fsr = *fi->fsr;
- }
-
-
- /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
- is not the address of a valid instruction, the address of the next
- instruction beyond ADDR otherwise. *PWORD1 receives the first word
- of the instruction.*/
-
-
- CORE_ADDR
- NEXT_PROLOGUE_INSN(addr, lim, pword1)
- CORE_ADDR addr;
- CORE_ADDR lim;
- short *pword1;
- {
- if (addr < lim+8)
- {
- read_memory (addr, pword1, sizeof(*pword1));
- SWAP_TARGET_AND_HOST (pword1, sizeof (short));
- return addr + 2;
- }
-
- return 0;
-
- }
-
- /* Examine the prologue of a function. `ip' points to the first instruction.
- `limit' is the limit of the prologue (e.g. the addr of the first
- linenumber, or perhaps the program counter if we're stepping through).
- `frame_sp' is the stack pointer value in use in this frame.
- `fsr' is a pointer to a frame_saved_regs structure into which we put
- info about the registers saved by this frame.
- `fi' is a struct frame_info pointer; we fill in various fields in it
- to reflect the offsets of the arg pointer and the locals pointer. */
-
- /* We will find two sorts of prologue, framefull and non framefull:
-
- push r2
- push r3
- push fp
- mov sp,fp
- stack_ad
-
- and
- push x
- push y
- stack_ad
-
- */
-
- static CORE_ADDR
- examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
- register CORE_ADDR ip;
- register CORE_ADDR limit;
- FRAME_ADDR after_prolog_fp;
- struct frame_saved_regs *fsr;
- struct frame_info *fi;
- {
- register CORE_ADDR next_ip;
- int r;
- int i;
- int have_fp = 0;
-
- register int src;
- register struct pic_prologue_code *pcode;
- INSN_WORD insn_word;
- int size, offset;
- unsigned int reg_save_depth = 2; /* Number of things pushed onto
- stack, starts at 2, 'cause the
- PC is already there */
-
- unsigned int auto_depth = 0; /* Number of bytes of autos */
-
- char in_frame[NUM_REGS]; /* One for each reg */
-
- memset(in_frame, 1, NUM_REGS);
-
- if (after_prolog_fp == 0) {
- after_prolog_fp = read_register(SP_REGNUM);
- }
- if (ip == 0 || ip & ~0xffff) return 0;
-
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
-
- /* Skip over any push instructions, and remember where they were saved */
-
-
- while (next_ip && IS_PUSH(insn_word))
- {
- ip = next_ip;
- in_frame[insn_word & 0x7] = reg_save_depth;
- next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);
- reg_save_depth +=2;
-
- }
-
-
- /* Is this a move into the fp */
- if (next_ip && IS_MOV_SP_FP(insn_word))
- {
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);
- have_fp = 1;
-
- }
-
-
- /* Skip over any stack adjustment, happens either with a number of
- sub#2,sp or a mov #x,r5 sub r5,sp */
-
-
- if (next_ip && IS_SUB2_SP(insn_word))
- {
- while (next_ip && IS_SUB2_SP(insn_word))
- {
- auto_depth +=2 ;
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);
- }
- }
- else
- {
- if (next_ip && IS_MOVK_R5(insn_word))
- {
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);
- auto_depth += insn_word;
- ip +=4;
-
- }
- }
-
-
-
- /* The args are always reffed based from the stack pointer */
- fi->args_pointer = after_prolog_fp - auto_depth;
- /* Locals are always reffed based from the fp */
- fi->locals_pointer = after_prolog_fp ;
- /* The PC is at a known place */
- fi->from_pc = read_memory_short(after_prolog_fp + reg_save_depth-2 );
-
-
- /* Rememeber any others too */
-
- in_frame[PC_REGNUM] = 0;
-
- for (r = 0; r < NUM_REGS; r++)
- {
- if (in_frame[r] != 1)
- {
- fsr->regs[r] = after_prolog_fp + reg_save_depth - in_frame[r] -2;
- }
- else
- {
- fsr->regs[r] = 0;
- }
- }
- if (have_fp)
- /* We keep the old FP in the SP spot */
- fsr->regs[SP_REGNUM] = (read_memory_short(fsr->regs[6])) ;
- else
- fsr->regs[SP_REGNUM] = after_prolog_fp + reg_save_depth;
-
- return (ip);
- }
-
- void
- init_extra_frame_info (fromleaf, fi)
- int fromleaf;
- struct frame_info *fi;
- {
- fi->fsr = 0; /* Not yet allocated */
- fi->args_pointer = 0; /* Unknown */
- fi->locals_pointer = 0; /* Unknown */
- fi->from_pc = 0;
-
- }
- /* Return the saved PC from this frame.
-
- If the frame has a memory copy of SRP_REGNUM, use that. If not,
- just use the register SRP_REGNUM itself. */
-
- CORE_ADDR
- frame_saved_pc (frame)
- FRAME frame;
-
- {
- return frame->from_pc;
- }
-
-
- CORE_ADDR
- frame_locals_address (fi)
- struct frame_info *fi;
- {
- if (!fi->locals_pointer)
- {
- struct frame_saved_regs ignore;
- get_frame_saved_regs(fi, &ignore);
-
- }
- return fi->locals_pointer;
- }
-
- /* Return the address of the argument block for the frame
- described by FI. Returns 0 if the address is unknown. */
-
- CORE_ADDR
- frame_args_address (fi)
- struct frame_info *fi;
- {
- if (!fi->args_pointer)
- {
- struct frame_saved_regs ignore;
- get_frame_saved_regs(fi, &ignore);
-
- }
-
- return fi->args_pointer;
- }
-
-
- void h8300_pop_frame()
- {
- unsigned regnum;
- struct frame_saved_regs fsr;
- struct frame_info *fi;
-
- FRAME frame = get_current_frame();
- fi = get_frame_info(frame);
- get_frame_saved_regs(fi, &fsr);
-
- for (regnum = 0; regnum < NUM_REGS; regnum ++)
- {
- if(fsr.regs[regnum])
- {
- write_register(regnum, read_memory_short (fsr.regs[regnum]));
- }
-
- flush_cached_frames();
- set_current_frame(create_new_frame(read_register(FP_REGNUM),
- read_pc()));
-
- }
-
- }
-